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Abstract. We study the situation in which, having solved a linear program with an interior-
point method, we are presented with a new problem instance whose data is slightly perturbed from
the original. We describe strategies for recovering a \warm-start" point for the perturbed problem
instance from the iterates of the original problem instance. We obtain worst-case estimates of the
number of iterations required to converge to a solution of the perturbed instance from the warm-start
points, showing that these estimates depend on the size of the perturbation and on the conditioning
and other properties of the problem instances.

1. Introduction. This paper describes and analyzes warm-start strategies for
interior-point methods applied to linear programming (LP) problems. We consider
the situation in which one linear program, the \original instance," has been solved
by an interior-point method, and we are then presented with a new problem of the
same dimensions, the \perturbed instance," in which the data is slightly di�erent.
Interior-point iterates for the original instance are used to obtain warm-start points
for the perturbed instance, so that when an interior-point method is started from
this point, it �nds the solution in fewer iterations than if no prior information were
available. Although our results are theoretical, the strategies proposed here can be
applied to practical situations, an aspect that is the subject of ongoing study.

The situation we have outlined arises, for instance, when linearization methods
are used to solve nonlinear problems, as in the sequential linear programming algo-
rithm. (One extension of this work that we plan to investigate is to convex quadratic
programs, which would be relevant to solution of subproblems in many sequential
quadratic programming algorithms.) Our situation is di�erent from the one consid-
ered by Gondzio [4], who deals with the case in which the number of unknowns in
the primal formulation is increased, and the constraint matrix and cost vector are
correspondingly expanded. The latter situation arises in solving subproblems arising
from cutting-plane algorithms, for example.

For our analysis, we use the tools developed by Nunez and Freund [5], which
in turn are based on the work of Renegar [6, 7, 8, 9] on the conditioning of linear
programs and the complexity of algorithms for solving them. We also use standard
complexity analysis techniques from the interior-point literature for estimating the
number of iterations required to solve a linear program to given accuracy.

We start in Section 2 with an outline of notation and a restatement and slight
generalization of the main result from Nunez and Freund [5]. Section 3 outlines the
warm-start strategies that we analyze in the paper and describes how our results can
be used to obtain reduced complexity estimates for interior-point methods that use
the warm starts. In Section 4 we consider a warm-start technique in which a least-
squares change is applied to a feasible interior-point iterate for the original instance to
make it satisfy the constraints for the perturbed instance. We analyze this technique
for central path neighborhoods based on both the Euclidean norm and the 1 norm,
deriving in each case a worst-case estimate for the number of iterations required by
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an interior-point method to converge to an approximate solution of the perturbed
instance. In Section 5 we study the technique of applying one iteration of Newton's
method to a system of equations that is used to recover a strictly feasible point for
the perturbed instance from a feasible iterate for the original instance.

2. Preliminaries: Conditioning of LPs, Central Path Neighborhoods,

Bounds on Feasible Points. We consider the LP in the following standard form:

min
x

cTx subject to Ax = b; x � 0; (P)

where A 2 Rm�n, b 2 Rm, and c 2 Rn are given and x 2 Rn. The associated dual
LP is given by the following:

max
y;s

bTy subject to AT y + s = c; s � 0; (D)

where y 2 Rm and s 2 Rn. We borrow the notation of Nunez and Freund [5],
denoting by d the data triplet (A; b; c) that de�nes the problems (P) and (D). We
de�ne the norm of d di�erently from Nunez and Freund, that is, as the maximum of
the Euclidean norms of the three data components:

kdk def
= max(kAk2; kbk2; kck2):(2.1)

(We will use the norm notation k�k on a vector or matrix to denote the Euclidean norm
and the operator norm it induces, respectively, unless explicitly indicated otherwise.)

We use F to denote the space of strictly feasible data instances, that is,

F = f(A; b; c) : 9 x; y; s with (x; s) > 0 such that Ax = b; ATy + s = cg:

The complement of F , denoted by FC , consists of data instances d for which either
(P) or (D) does not have any strictly feasible solutions. The (shared) boundary of F
and FC is given by

B = cl(F) \ cl(FC);

where cl(�) denotes the closure of a set. Since (0; 0; 0) 2 B, we have that B 6= ;. The
data instances d 2 B will be called ill-posed data instances, since arbitrary perturba-
tions in the data d can result in data instances in F as well as in FC . The distance
to ill-posedness is de�ned as

�(d) = inffk�dk : d+�d 2 Bg;(2.2)

where we use the norm (2.1) to de�ne k�dk. The condition number of a feasible
problem instance d is de�ned as

C(d) def= kdk
�(d)

; (with C(d) def= 1 when �(d) = 0):(2.3)

Since the perturbation �d = �d certainly has d+�d = 0 2 B, we have that �(d) � kdk
and therefore C(d) � 1. Note, too, that C(d) is invariant under a nonzero multiplica-
tive scaling of the data d, that is, C(�d) = C(d) for all � 6= 0.

Robinson [10] and Ashmanov [1] showed that a data instance d 2 F satis�es
�(d) > 0 (that is, d lies in the interior of F) if and only if A has full row rank. For
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such d, another useful bound on �(d) is provided by the minimum singular value of
A. If we write the singular value decomposition of A as

A = USV T =
mX
i=1

�i(A)uiv
T
i ;

where U and V are orthogonal and S = diag(�1(A); �2(A); : : : ; �m(A)) with �1(A) �
�2 � : : : � �m(A) > 0 denoting the singular values of A, then the perturbation

�A = ��m(A)umvTm
is such that A + �A is singular, and moreover k�Ak = �m(A) due to the fact that
the Euclidean norm of a rank-one matrix satis�es the property

k�uvTk2 = j�j kuk2 kvk2:(2.4)

We conclude that

�(d) � �m(A):(2.5)

It is well known that for such d 2 int(F), the system given by

Ax = b(2.6a)

AT y + s = c(2.6b)

XSe = �e(2.6c)

(x; s) > 0(2.6d)

has a unique solution for every � > 0, where e denotes the vector of ones in the appro-
priate dimension and X and S are the diagonal matrices formed from the components
of x and s, respectively. We denote the solutions of (2.6) by (x(�); y(�); s(�)) and use
P to denote the central path traced out by these solutions for � > 0, that is,

P def
= f(x(�); y(�); s(�)) : � > 0g :(2.7)

Throughout this paper, we assume that the original data instance d lies in F
and that �(d) > 0. In Sections 4 and 5, we assume further that the original data
instance d has been solved by a feasible path-following interior-point method. Such a
method generates a sequence of iterates (xk; yk; sk) that satisfy the relations (2.6a),
(2.6b), and (2.6d) and for which the pairwise products xki s

k
i , i = 1; 2; : : :; n, are not

too di�erent from one another, in the sense of remaining within some well-de�ned
\neighborhood" of the central path. The duality measure (xk)T sk is driven toward
zero as k !1, and search directions are obtained by applying a modi�ed Newton's
method to the nonlinear system formed by (2.6a), (2.6b), and (2.6c).

We now give some notation for feasible sets and central path neighborhoods as-
sociated with the particular problem instance d = (A; b; c). Let S and S0 denote the
set of feasible and strictly feasible primal-dual points respectively, that is,

S = f(x; y; s) : Ax = b; AT y + s = c; (x; s) � 0g;
S0 = f(x; y; s) 2 S : (x; s) > 0g:
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(Note that d 2 F if and only if S0 6= ;.) The central path neighborhoods most
commonly used in interior-point methods we refer to as the narrow and wide neigh-
borhoods. The narrow neighborhood denoted by N2(�) is de�ned as

N2(�) = f(x; y; s) 2 S0 : kXSe � (xT s=n)ek2 � �(xT s=n)g;(2.8)

for � 2 [0; 1). The wide neighborhood, which is denoted by N�1(
), is given by

N�1(
) = f(x; y; s) 2 S0 : xisi � 
(xT s=n); 8 i = 1; 2; : : :; ng;(2.9)

where ui denotes the ith component of the vector u and the parameter 
 lies in (0; 1].

We typically use a bar to denote the corresponding quantities for the perturbed
problem instance d+�d. That is, we have

�S = f(x; y; s) : (A+�A)x = (b+�b); (A +�A)T y + s = (c+�c); (x; s) � 0g;
�So = f(x; y; s) 2 �S : (x; s) > 0g;

whereas

�N2(�) = f(x; y; s) 2 �So : kXSe � (xT s=n)ek2 � �(xT s=n)g;(2.10a)
�N�1(
) = f(x; y; s) 2 �So : xisi � 
(xT s=n); 8 i = 1; 2; : : : ; ng:(2.10b)

We associate a value of � with each iterate (x; y; s) 2 S (or �S) by setting

� = xT s=n:(2.11)

We call this � the duality measure of the point (x; y; s). When (x; y; s) is feasible, it
is easy to show that the duality gap cTx� bT y is equal to n�.

Finally, we state a modi�ed version of Theorem 3.1 from Nunez and Freund [5],
which uses our de�nition (2.1) of the norm of the data instance and takes note of the
fact that the proof in [5] continues to hold when we consider strictly feasible points
that do not lie exactly on the central path P.

Theorem 2.1. If d = (A; b; c) 2 F and �(d) > 0, then for any point (x; y; s)
satisfying the conditions

Ax = b; ATy + s = c; (x; s) > 0;(2.12)

the following bounds are satis�ed:

kxk � C(d) (C(d) + �n=kdk)(2.13a)

kyk � C(d) (C(d) + �n=kdk)(2.13b)

ksk � 2kdkC(d) (C(d) + �n=kdk) ;(2.13c)

where we have de�ned � as in (2.11).

The proof exactly follows the logic of the proof in [5, Theorem 3.1], but di�ers
in many details because of our use of Euclidean norms on the matrices and vectors.
For instance, where the original proof de�nes a perturbation �A = �beT=kxk1 to
obtain an infeasible data instance, we use instead �A = �bxT=kxk22. We also use the
observation (2.4) repeatedly.
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3. Warm Starts and Reduced Complexity. Before describing speci�c strate-
gies for warm starts, we preview the nature of our later results and show how they
can be used to obtain improved estimates of the complexity of interior-point methods
that use these warm starts.

We start by recalling some elements of the complexity analysis of interior-point
methods. These methods typically produce iterates (xk; yk; sk) that lie within a neigh-
borhood such as (2.8) or (2.9) and for which the duality measure �k (de�ned as in
(2.11) by �k = (xk)T sk=n) decreases monotonically with k, according to a bound of
the following form:

�k+1 �
�
1� �

n�

�
�k;(3.1)

where � and � are positive constants that depend on the algorithm. Typically, � is 0:5,
1, or 2, while � depends on the parameters � or 
 that de�ne the neighborhood and
various other algorithmic parameters. Given a starting point (x0; y0; s0) with duality
measure �0, the number of iterations required to satisfy the stopping criterion

� � �kdk(3.2)

(for some small positive �) is bounded by

log(�kdk)� log�0
log (1� �=n� )

= O
�
n� log

�0
kdk�

�
:(3.3)

It follows from this bound that, provided we have

�0
kdk = O(1=��)

for some �xed � > 0|which can be guaranteed for small � when we apply a cold-start
procedure|the number of iterations required to achieve (3.2) is

O(n� j log �j):(3.4)

Our warm-start strategies aim to �nd a starting point for the perturbed instance
that lies inside one of the neighborhoods (2.10), and for which the initial duality
measure ��0 is not too large. By applying (3.3) to the perturbed instance, we see that
if ��0=kd+�dk is less than 1, the formal complexity of the method will be better than
the general estimate (3.4).

Both warm-start strategies that we describe in subsequent sections proceed by
taking a point (x; y; s) from a neighborhood such as (2.8), (2.9) for the original in-
stance and calculating an adjustment (�x;�y;�s) based on the perturbation �d to
obtain a starting point for the perturbed instance. The strategies are simple; their
computational cost is no greater than the cost of one interior-point iteration. They do
not succeed in producing a valid starting point unless the point (x; y; s) from the origi-
nal problem has a large enough value of � = xT s=n. That is, we must \back up" along
the central path neighborhood until the adjustment (�x;�y;�s) does not cause some
components of x or s to become negative. (Indeed, we require a stronger condition to
hold: that the adjusted point (x+�x; y+�y; s+�s) belong to a neighborhood such
as those of (2.10).) Since larger perturbations �d generally lead to larger adjustments
(�x;�y;�s), the amount by which we must \back up" increases with the size of �d.
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Most of the results in the following sections quantify this observation. They give a
lower bound on �=kdk|expressed in terms of the size of the components of �d, the
conditioning C(d) of the original problem, and other quantities|such that the warm-
start strategy applied from a point (x; y; s) satisfying � = xT s=n and a neighborhood
condition yields a valid starting point for the perturbed problem.

These results can be applied in a practical way when an interior-point approach
is used to solve the original instance. Suppose that the iterates (xk; yk; sk) of this
algorithm have been stored and that we restrict the amount by which �k is decreased
on each iteration so that

�k+1 � ��k; for all k = 0; 1; 2; : : :;(3.5)

for some � 2 (0; 1). Suppose that we denote the lower bound discussed in the preceding
paragraph by ��=kdk. Then the best available point for the original instance from
which to calculate the warm start is the iterate (x`; y`; s`), where ` is the largest index
for which

�` � ��:

Note that because of (3.5) and the choice of `, we have in fact that

�� � �` � (1=�)��:(3.6)

The warm-start point is then

(�x0; �y0; �s0) = (x`; y`; s`) + (�x;�y;�s);(3.7)

where (�x;�y;�s) is the adjustment computed from one of our warm-start strategies.
The duality measure corresponding to this point is

��0 = (�x0)T �s0=n = �` + (x`)T�s + (s`)T�x+�xT�s:

By using the bounds on the components of (�x;�y;�s) that are obtained during the
proofs of each major result in conjunction with the bounds (2.13), we �nd that ��0
can be bounded above by some multiple of �� + �`. Because of (3.6), we can deduce
in each case that

��0 � ���;(3.8)

for some � independent of the problem instance d and the perturbation �d. We
conclude by applying (3.3) to the perturbed instance that the number of iterations
required to satisfy the stopping criterion

� � �kd+�dk(3.9)

starting from (�x0; �y0; �s0), is bounded by

O
�
n� log

��

kd+�dk�
�
:(3.10)

Since our assumptions on k�dk usually ensure that

k�dk � 0:5kdk;(3.11)
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we have that

1

kd+�dk �
1

kdk � k�dk �
2

kdk ;

so that (3.10) can be expressed more conveniently as

O
�
n� log

��

kdk�
�
:(3.12)

After some of the results in subsequent sections, we will substitute for � and �� in
(3.12), to express the bound on the number of iterations in terms of the conditioning
C(d) of the original instance and the size of the perturbation �d.

Our �rst warm-start strategy, a least-squares correction, is described in Section 4.
The second strategy, a \Newton step correction," is based on a recent paper by
Y�ld�r�m and Todd [12] and is described in Section 5.

4. Least-Squares Correction. For much of this section, we restrict our anal-
ysis to the changes in b and c only; that is, we assume

�d = (0;�b;�c):(4.1)

Perturbations to A will be considered in Section 4.3.
Given any primal-dual feasible point (x; y; s) for the instance d, the least-squares

correction for the perturbation (4.1) is the vector (�x;�y;�s) obtained from the
solutions of the following subproblems:

min k�xk s.t. A(x +�x) = b+�b;

min k�sk s.t. AT (y +�y) + (s +�s) = c+�c:

Because Ax = b and AT y + s = c, we can restate these problems as

min k�xk s.t. A�x = �b;

min k�sk s.t. AT�y +�s = �c;

which are independent of (x; y; s). Given the following QR factorization of AT ,

AT =
�
Y Z

� � R
0

�
= Y R;(4.2)

where
�
Y Z

�
is orthogonal and R is upper triangular, we �nd by simple manip-

ulation of the optimality conditions that the solutions can be written explicitly as

�x = Y R�T�b;(4.3a)

�y = R�1Y T�c;(4.3b)

�s = (I � Y Y T )�c:(4.3c)

Observe in particular that

�xT�s = 0:(4.4)

Our strategy is as follows: we calculate the correction (4.3) just once, then back-
track along the path of iterates (xk; yk; sk) for the original problem until we �nd an
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index k such that (xk+�x; sk+�s) > 0 and (xk+�x; yk+�y; sk+�s) lies within
either �N2(�) or �N�1(
). We hope to be able to satisfy these requirements for some
index k for which the parameter �k is not too large. In this manner, we hope to
obtain a starting point for the perturbed problem for which the initial value of � is
not large, so that we can solve the problem using a smaller number of interior-point
iterations than if we had started without the bene�t of the iterates from the original
problem.

Some bounds that we use throughout our analysis follow immediately from (4.3):

k�sk � k�ck; k�xk � k�bk
�m(A)

� k�bk
�(d)

;(4.5)

where, as in (2.5), �m(A) is the minimum singular value of A. These bounds follow
from the fact that I � Y Y T is an orthogonal projection matrix onto the null space of
A and from the observation that R has the same singular values as A. By de�ning

�b =
k�bk
kdk ; �c =

k�ck
kdk ;(4.6)

we can rewrite (4.5) as

k�sk � kdk�c; k�xk � C(d)�b:(4.7)

We also de�ne the following quantity, which occurs frequently in the analysis:

�bc = �c + 2C(d)�b:(4.8)

In the remainder of the paper, we make the mild assumption that

�b < 1; �c < 1:(4.9)

4.1. Small Neighborhood. Suppose that we have iterates for the original prob-
lem that satisfy the following property, for some �0 2 (0; 1):

kXSe � �ek2 � �0�; where � = xT s=n:(4.10)

That is, (x; y; s) 2 N2(�0). Iterates of a short-step path-following algorithm typi-
cally satisfy a condition of this kind. Since (x; y; s) is a strictly feasible point, its
components satisfy the bounds (2.13). Note, too, that we have

kXSe � �ek � �0� ) (1� �0)� � xisi � (1 + �0)�:(4.11)

Our �rst proposition gives conditions on �bc and � that ensure that the least-
squares correction yields a point in the neighborhood �N�1(
).

Proposition 4.1. Let 
 2 (0; 1��0) be given, and let � 2 (0; 1�
��0). Assume
that �d satis�es

�bc � 1� �0 � 
 � �

(n+ 1)C(d) :(4.12)

Let (x; y; s) 2 N2(�0), and suppose that (�x;�y;�s) is the least-squares correction
(4.3). Then (x+�x; y +�y; s+�s) lies in �N�1(
) if

� � kdk
�

3C(d)2�bc def
= ��1:(4.13)
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Proof. By using (4.11), (2.13), (4.7), and (4.8), we obtain a lower bound on
(xi +�xi)(si +�si) as follows:

(xi +�xi)(si +�si)

= xisi + xi�si +�xisi +�xi�si

� (1� �0)�� kxkk�sk � k�xkksk � k�xkk�sk
� (1� �0)�� C(d) (C(d) + �n=kdk) kdk�c

�2kdkC(d)2(C(d) + �n=kdk)�b � kdkC(d)�b�c
� � (1� �0 � nC(d)�bc)� C(d)2kdk�bc � C(d)kdk�b�c
� � (1� �0 � nC(d)�bc)� 2C(d)2kdk�bc:(4.14)

Because of our assumption (4.12), the coe�cient of � in (4.14) is positive, so (4.14)
represents a positive lower bound on (xi +�xi)(si +�si) for all � su�ciently large.

For an upper bound on (x+�x)T (s+�s)=n, we have from (2.13), (4.7), and the
relation (4.4) that

(x+�x)T (s +�s)=n

� � + k�xkksk=n+ kxkk�sk=n
� � + 2C(d)2kdk�b(C(d) + �n=kdk)=n+ C(d)kdk�c(C(d) + �n=kdk)=n
� �(1 + C(d)�bc) + C(d)2kdk�bc=n:(4.15)

It follows from this bound and (4.14) that a su�cient condition for the conclusion of
the proposition to hold is that

�(1� �0 � nC(d)�bc) � 2C(d)2kdk�bc � 
�(1 + C(d)�bc) + 
C(d)2kdk�bc=n;

which is equivalent to

� � kdkC(d)2�bc(2 + 
=n)

1� �0 � 
 � C(d)�bc(n+ 
)
;(4.16)

provided that the denominator is positive. Because of the condition (4.12), and using

 2 (0; 1) and n � 1, the denominator is in fact bounded below by the positive
quantity �, so the condition (4.16) is implied by (4.13).

Finally, we show that our bounds ensure the positivity of x + �x and s + �s.
It is easy to show that the right-hand side of (4.14) is also a lower bound on (xi +
��xi)(si + ��si) for all � 2 [0; 1] and all i = 1; 2; : : :; n. Because � satis�es (4.16),
we have (xi + ��xi)(si + ��si) > 0 for all � 2 [0; 1]. Since we know that (x; s) > 0,
we conclude that xi+�xi > 0 and si+�si > 0 for all i as well, completing the proof.

Next, we seek conditions on �bc and � that ensure that the corrected iterate lies
in a narrow central path neighborhood for the perturbed problem.

Proposition 4.2. Let � > �0 be given, and let � 2 (0; � � �0). Assume that the
perturbation �d satis�es

�bc � � � �0 � �

(2n+ 1)C(d) :(4.17)
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Suppose that (x; y; s) 2 N2(�0) for the original problem and that (�x;�y;�s) is the
least-squares correction (4.3). Then, (x+�x; y +�y; s+�s) will lie in �N2(�) if

� � kdk
�

4C(d)2�bc def
= ��2:(4.18)

Proof. We start by �nding a bound on the norm of the vector

[(xi +�xi)(si +�si)]i=1;2;:::;n �
�
(x+�x)T (s +�s)=n

�
e:(4.19)

Given two vectors y and z in Rn, we have that




[yizi]i=1;2;:::;n



 � kyk kzk;

��yT z�� � kyk kzk:(4.20)

By using these elementary inequalities together with (4.4), (4.7), (4.8) and (2.13), we
have that the norm of (4.19) is bounded by




[xisi]i=1;2;:::;n � �e



 + 2 [k�xk ksk+ kxk k�sk] + k�xk k�sk

� �0�+ 2C(d)kdk�bc (C(d) + n�=kdk) + C(d)kdk�b�c
� [�0 + 2nC(d)�bc]�+ 3kdkC(d)2�bc:

Meanwhile, we obtain a lower bound on the duality measure after the correction by
using the same set of relations:

(x+�x)T (s +�s)=n � � � [k�xk ksk+ kxk k�sk]=n
� � � C(d)kdk�bc(C(d) + n�=kdk)=n
� � [1� C(d)�bc]� C(d)2kdk�bc=n:(4.21)

Therefore, a su�cient condition for

(x+�x; y +�y; s+�s) 2 �N2(�)

is that

[�0 + 2nC(d)�bc]� + 3kdkC(d)2�bc � �� [1� C(d)�bc]� �C(d)2kdk�bc=n;

which after rearrangement becomes

� [� � �0 � 2nC(d)�bc � �C(d)�bc] � 3kdkC(d)2�bc + �kdkC(d)2�bc=n:(4.22)

We have from (4.17) that the coe�cient of � on the left-hand side of this expression
is bounded below by �. By dividing both sides of (4.22) by this expression, and using
� 2 (0; 1) and n � 1, we �nd that (4.18) is a su�cient condition for (4.22). A similar
argument as in the proof of Proposition 4.1 together with the fact that ��2 > ��1
ensures positivity of (x+�s; s+�s).

We now specialize the discussion of Section 3 to show Propositions 4.1 and 4.2
can be used to obtain lower complexity estimates for the interior-point warm-start
strategy.

Considering �rst the case of Proposition 4.1, we have from the standard analysis
of a long-step path-following algorithm that constrains its iterates to lie in �N�1(
)
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(see, for example, Wright [11, Chapter 5]) that the reduction in duality measure at
each iteration satis�es (3.1) with

� = 1; � = 2
3
2 


1� 


1 + 

minf�min(1� �min); �max(1� �max)g;

and 0 < �min < �max < 1 are the lower and upper bounds on the centering parameter
� at each iteration. Choosing one of the iterates of this algorithm (x`; y`; s`) in the
manner of Section 3, and de�ning the starting point as in (3.7), we have from (4.15),
(4.12), (4.13), and the conditions 0 < � < 1 and n � 1 that

��0 = (�x0)T �s0=n

� �`(1 + C(d)�bc) + 2C(d)2kdk�bc=n � �`(1 + 1=n) + ��1(�=n) � 2�` + ��1:

Now from the property (3.6), it follows that

��0 � (1 + 2=�)��1:

It is easy to verify that (4.12) implies that k�dk � kdk=2, so that we can use the
expression (3.12) to estimate the number of iterations. By substituting � = 1 and
�� = ��1 into (3.12), we obtain

O
�
n log

�
1

�
C(d)2�bc

��
iterations:(4.23)

We conclude that if �bc is small in the sense that �bc � C(d)�2, the estimate (4.23) is
an improvement on the cold-start complexity estimate (3.4), so it is advantageous to
use the warm-start strategy.

Taking now the case of a starting point in the smaller neighborhood of Propo-
sition 4.2, we set � = 0:4 and the centering parameter � to the constant value
1 � 0:4=n1=2. The standard analysis of the short-step path-following algorithm (see,
for example, [11, Chapter 4]) then shows that (3.1) holds with

� = 0:5; � = 0:4:

By using the procedure outlined in Section 3 to derive the warm-start point, the
argument of the preceding paragraph can be applied to obtain the following on the
number of iterations:

O
�
n1=2 log

�
1

�
C(d)2�bc

��
:(4.24)

We conclude as before that improved complexity over a cold start is available provided
that �bc � C(d)�2.

4.2. Wide Neighborhood. We now consider the case in which the iterates for
the original problem lie in a wide neighborhood of the central path. To be speci�c, we
suppose that they satisfy xisi � 
0� for some 
0 2 (0; 1), that is, (x; y; s) 2 N�1(
0).
Note that in this case, we have the following bounds on the pairwise products:


0� � xisi � (n � (n � 1)
0)�:(4.25)
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Similarly to the upper bounds (2.13) on kxk and ksk, we can derive lower bounds on
xi and si by combining (2.13) with (4.25) and using xi � kxk and si � ksk:

xi � 
0�

2kdkC(d)(C(d) + n�=kdk) ;(4.26a)

si � 
0�

C(d)(C(d) + n�=kdk) :(4.26b)

These lower bounds will be useful in the later analysis. The following proposition
gives a su�cient condition for the least-squares corrected point to be a member of the
wide neighborhood for the perturbed problem. The proof uses an argument identical
to the proof of Proposition 4.1, with 
0 replacing (1� �0).

Proposition 4.3. Given 
 and 
0 such that 0 < 
 < 
0 < 1, suppose that � is a
parameter satisfying � 2 (0; 
0 � 
). Assume that �d satis�es

�bc � 
0 � 
 � �

(n+ 1)C(d) :(4.27)

Suppose that (x; y; s) 2 N�1(
0) and denote by (�x;�y;�s) the least-squares cor-
rection (4.3). Then a su�cient condition for

(x+�x; y +�y; s+�s) 2 �N�1(
)(4.28)

is that

� � kdk
�

3C(d)2�bc def
= ��3:(4.29)

An argument like the one leading to (4.23) can now be used to show that a
long-step path-following method requires

O
�
n log

�
1

�
C(d)2�bc

��
iterations(4.30)

to converge from the warm-start point to a point that satis�es (3.9).

4.3. Perturbations in A. We now allow for perturbations in A as well as in
b and c. By doing so, we introduce some complications in the analysis that can be
circumvented by imposing an a priori upper bound on the value of � that we are
willing to consider. This upper bound is large enough to encompass all values of �
of interest from the viewpoint of complexity, in the sense that when � exceeds this
bound, the warm-start strategy does not lead to an appreciably improved complexity
estimate over the cold-start approach.

For some constant � > 1, we assume that � satis�es the bound

� � � � 1

n
kdkC(d) def= �up(4.31)

so that, for a subexpression that recurs often in the preceding sections, we have

C(d) + n�=kdk � �C(d):
For � 2 [0; �up], we can simplify a number of estimates in the preceding sections, to
remove their explicit dependence on �. In particular, the bounds (2.13) on the strictly
feasible point (x; y; s) with � = xT s=n become

kxk � �C(d)2; kyk � �C(d)2; ksk � 2�kdkC(d)2:(4.32)
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Given a perturbation �d = (�A;�b;�c) with k�dk < �(d), we know that A+�A
has full rank. In particular, for the smallest eigenvalue, we have

�m(A+�A) � �m(A) � k�Ak:(4.33)

To complement the de�nitions (4.6), we introduce

�A =
k�Ak
kdk :(4.34)

As before, we consider a warm-start strategy obtained by applying least-squares
corrections to a given point (x; y; s) that is strictly feasible for the unperturbed prob-
lem. The correction �x is the solution of the following subproblem:

mink�xk s.t. (A +�A)(x+�x) = b +�b;(4.35)

which is given explicitly by

�x = (A +�A)T
�
(A+�A)(A +�A)T

��1
(�b��Ax) :(4.36)

By using the QR factorization of (A + �A)T as in (4.2) and (4.3), and noting that
Ax = b, we �nd the following bound on k�xk:

k�xk � k�bk+ k�Akkxk
�m(A +�A)

:(4.37)

By using (4.33), (2.5), and the de�nitions (4.6), (4.34), and (2.3), we have

k�xk � k�bk+ k�Akkxk
�m(A)� k�Ak � k�bk+ k�Akkxk

�(d)� k�Ak =
�b + �Akxk
1=C(d)� �A

:

In particular, when x is strictly feasible for the original problem, we have from (4.32)
that

k�xk � C(d)�b + �C(d)2�A
1� �AC(d) ;

while if we make the additional simple assumption that

�A � 1

2C(d) ;(4.38)

we have immediately that

k�xk � 2C(d)�b + 2�C(d)3�A:(4.39)

By using (4.38) again, together with (4.9) and the known bounds C(d) � 1 and � > 1,
we obtain

k�xk � 2C(d)�b + 2�C(d)3�A � 2C(d) + �C(d)2 � 3�C(d)2:(4.40)

The dual perturbation is the solution of the problem

min k�sk s.t. (A+�A)T (y +�y) + (s+�s) = c +�c:(4.41)



14 E. ALPER YILDIRIM AND STEPHEN J. WRIGHT

Once again, the minimum norm solution is unique and given by

�s =
h
I � (A+�A)T

�
(A+�A)(A +�A)T

��1
(A+�A)

i
(�c��ATy):(4.42)

Therefore, we have the following upper bound:

k�sk � k�ck+ k�Akkyk:(4.43)

Using (4.32), we have for (x; y; s) strictly feasible for the original problem that

k�sk � k�ck+ k�Ak�C(d)2
� kdk�c + �kdkC(d)2�A:(4.44)

By using these inequalities, we can prove a result similar to Proposition 4.3.
Proposition 4.4. Suppose we are given 
 and 
0 such that 0 < 
 < 
0 < 1,

and a feasible primal-dual point (x; y; s) 2 N�1(
0). Assume further that � = xT s=n
satis�es (4.31) and that the perturbation component �A satis�es (4.38). For the
perturbation �d, suppose that (�x;�y;�s) is the least-squares correction obtained
from (4.35) and (4.41). We then have

(x+�x; y +�y; s+�s) 2 �N�1(
)(4.45)

provided that � satis�es the following lower bound:

� � 19�C(d)2 kdk

0 � 


max
�
�bc; �C(d)3�A

� def
= ��4:(4.46)

Proof. By using the upper bounds (4.39) and (4.40) on k�xk, (4.44) on k�sk,
and (4.32) on kxk and ksk, we have

(xi +�xi)(si +�si)

� 
0�� (kxk+ k�xk)k�sk � kskk�xk
� 
0�� [4�C(d)2][kdk�c + �kdkC(d)2�A]
�[2kdk�C(d)2][2C(d)�b + 2�C(d)3�A]

� 
0�� 4kdk�C(d)3�b � 4kdk�C(d)2�c � 8kdk�2C(d)5�A
� 
0�� 4kdk�C(d)2�bc � 8kdk�2C(d)5�A;

where for the last inequality we have used the de�nition (4.8). By similar logic, and
using (4.4), we have for the updated duality measure that

(x+�x)T (s +�s)=n

� �+ k�xk ksk=n+ kxk k�sk=n
� �+ [2C(d)�b + 2�C(d)3�A]2�kdkC(d)2=n+ �C(d)2[kdk�c + �kdkC(d)2�A]=n
= �+ 4�C(d)3kdk�b=n+ �C(d)2kdk�c=n+ 5�2C(d)5kdk�A=n
� �+ 2�C(d)2kdk�bc=n+ 5�2C(d)5kdk�A=n:

By comparing these two inequalities in the usual way, and using 
 2 (0; 1) and n � 1,
we have that a su�cient condition for the conclusion (4.45) to hold is that

(
0 � 
)� � 6kdk�C(d)2�bc + 13kdk�2C(d)5�A:(4.47)



WARM START STRATEGIES 15

Since from (4.46), we have

6

19
(
0 � 
)� � 6kdk�C(d)2�bc;

13

19
(
0 � 
)� � 13kdk�2C(d)5�A;

then (4.47) holds, and the proof is complete.
By using an argument like the ones leading to (4.23) and (4.30), we deduce that

a long-step path-following algorithm that uses the warm start prescribed in Proposi-
tion 4.4 requires

O
�
n

�
log

�
1

�
C(d)2�bc

�
+ log

�
1

�
C(d)5�A

���
iterations(4.48)

to converge to a point that satis�es (3.9).

5. Newton Step Correction. In a recent study, Y�ld�r�m and Todd [12] an-
alyzed the perturbations in b and c in linear and semide�nite programming using
interior-point methods. For such perturbations they stated a su�cient condition on
the norm of the perturbation, which depends on the current iterate, so that an adjust-
ment to the current point based on applying an iteration of Newton's method to the
system (2.6a), (2.6b), (2.6c) yields a feasible iterate for the perturbed problem with a
lower duality gap than that of the original iterate. In this section, we augment some
of the analysis of [12] with other results, like those of Section 4, to �nd conditions on
the duality gap � = xT s=n and the perturbation size under which the Newton step
yields a warm-start point that yields signi�cantly better complexity than a cold start.

Each iteration of a primal-dual interior-point method involves solving a Newton-
like system of linear equations whose coe�cient matrix is the Jacobian of the system
(2.6a), (2.6b), (2.6c). The general form of these equations is

A�x = rp
AT�y + �s = rd

S�x + X�s = rxs;
(5.1)

where typically rp = b�Ax and rd = c�ATy�s. The choice of rxs typically depends
on the particular method being applied, but usually represents a Newton or higher-
order step toward some \target point" (x0; y0; s0), which often lies on the central path
P de�ned in (2.7).

In the approach used in Y�ld�r�m and Todd [12] and in this section, this Newton-
like system is used to correct for perturbations in the data (A; b; c) rather than to
advance to a new primal-dual iterate. The right-hand side quantities are chosen
so that that adjustment (�x;�y;�s) yields a point that is strictly feasible for the
perturbed problem, and whose duality gap is no larger than that of the current point
(x; y; s).

In Section 5.1, we consider the case of perturbations in b and c but not in A. In
Section 5.2 we allow perturbations in A as well.

5.1. Pertubations in b and c. In our strategy, we assume that
� the current point (x; y; s) is strictly primal-dual feasible for the original prob-
lem;

� the target point (x0; y0; s0) used to de�ne rxs is a point that is strictly feasible
for the perturbed problem for which x0is

0
i = xisi for all i = 1; 2; : : : ; n;
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� the step is a pure Newton step toward (x0; y0; s0); that is, rp = �b, rd = �c,
and rxs = X 0S0e �XSe = 0.

Note that, in general, the second assumption is not satis�ed for an arbitrary current
point (x; y; s) because such a feasible point for the perturbed problem need not exist.
However, the Newton's method is still well de�ned with the above choices of rp, rd,
and rxs and that assumption is merely stated for the sake of a complete description
of our strategy.

Since A has full row rank by our assumption of �(d) > 0, we have by substituting
our right-hand side in (5.1) and performing block elimination that the solution is
given explicitly by

�y = (AD2AT )�1(�b+ AD2�c)(5.2a)

�s = �c� AT�y;(5.2b)

�x = �S�1X�s;(5.2c)

where

D2 def
= S�1X:(5.3)

Since A has full row rank and D is positive diagonal, AD2AT is invertible.
The following is an extension of the results in Y�ld�r�m and Todd [12] to the case

of simultaneous perturbations in b and c. Note in particular that the Newton step
yields a decrease in the duality gap xT s.

Proposition 5.1. Assume that (x; y; s) is a strictly feasible point for d. Let
�d = (0;�b;�c). Consider a Newton step (�x;�y;�s) taken from (x; y; s) targeting
the point (x0; y0; s0) that is strictly feasible for the perturbed problem and satis�es
X0S0e = XSe, and let

(~x; ~y; ~s)
def
= (x; y; s) + (�x;�y;�s):(5.4)

Then if






�
�c
�b

�




1

(5.5)

� 

�S�1 �I �AT (AD2AT )�1AD2
� � S�1AT (AD2AT )�1

�

�1
1

;

(~x; ~y; ~s) is feasible for the perturbed problem and satis�es

~xT ~s � xT s:(5.6)

Proof. By rearranging the equation (5.2c) and writing it componentwise, we have

si�xi + xi�si = 0() �xi
xi

+
�si
si

= 0; i = 1; 2; : : : ; n:(5.7)

The next iterate will be feasible if and only if

�xi
xi

� �1; �si
si

� �1; i = 1; 2; : : : ; n:



WARM START STRATEGIES 17

By combining these inequalities with (5.7), we �nd that feasibility requires that�����xi
xi

���� � 1;

�����si
si

���� � 1; i = 1; 2; : : : ; n;

or, equivalently, 

S�1�s



1

=


X�1�x




1
� 1:(5.8)

By using (5.2a) and (5.2c), we have

S�1�s



1

=


S�1[�c� AT�y]




1

=


S�1 ��c� AT (AD2AT )�1AD2�c� AT (AD2AT )�1�b

�


1

(5.9)

� 

�S�1 �I � AT (AD2AT )�1AD2
� � S�1AT (AD2AT )�1

�


1






�
�c
�b

�




1

:

Hence, (5.5) is su�cient to ensure that kS�1�sk1 � 1.
If we multiply (5.2c) by eT from the right, we obtain xT�s+sT�x = 0. Moreover,

if follows from (5.7) that �xi and �si have opposite signs for each i = 1; 2; : : : ; n, so
that �xT�s � 0. Therefore

(x+�x)T (s +�s) = xT s + xT�s+ sT�x+�xT�s = xTs +�xT�s � xT s;

proving (5.6).
Proposition 5.1 does not provide any insight about the behavior of the expression

on the right-hand side of (5.5) as a function of �. To justify our strategy of consid-
ering the iterates of the original problem in reverse order, we need to show that the
expression in question increases as � corresponding to (x; y; s) increases, so that we
can handle larger perturbations by considering iterates with larger values of �. In
the next theorem, we will show that there exists an increasing function f(�) with
f(0) = 0 that is a lower bound to the corresponding expression in (5.5) for all values
of �. The key to our result is the following bound:

�(H)
def
= sup

�2D+



�HT (H�HT )�1



1

<1;(5.10)

where D+ denotes the set of diagonal matrices in Rn�n with strictly positive diagonal
elements (i.e., positive de�nite diagonal matrices) and k � k1 is the `1 matrix norm
de�ned as the maximum of the sums of the absolute values of the entries in each row.
This result, by now well known, was apparently �rst proved by Dikin [2]. For a survey
of the background and applications of this and related results, see Forsgren [3].

Theorem 5.2. Consider points (x; y; s) in the neighborhood N�1(
0) for the
original problem, with 
0 2 (0; 1) and � = xTs=n as de�ned in (2.11). Then there
exists an increasing function f(�) with f(0) = 0 such that the expression on the right-
hand side of (5.5) is bounded below by f(�) for all (x; y; s) in this neighborhood.

Proof. Let (x; y; s) be a strictly feasible pair of points for the original problem,
which lies in N�1(
0) for some 
0 2 (0; 1). From (4.26) and (5.10), we have

S�1AT (AD2AT )�1




1
=


S�1D�2D2AT (AD2AT )�1




1

� 

X�1



1



D2AT (AD2AT )�1



1

� 1

�

2kdkC(d)

0

(C(d) + n�=kdk)�(A):(5.11)
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The �rst inequality is simply the matrix norm inequality. Since D2 = XS�1, and x
and s are strictly feasible, D2 is a positive de�nite diagonal matrix, so the bound in
(5.10) applies.

Similarly, consider the following:



S�1 �I �AT (AD2AT )�1AD2
�


1

(5.12)

=


S�1D�1

�
I �DAT (AD2AT )�1AD

�
D



1
:

Note that (I�DAT (AD2AT )�1AD) is a projection matrix onto the nullspace of AD,
therefore, its `2-norm is bounded by 1. Using the elementary matrix norm inequality
kPk1 � n1=2kPk2 for any P 2 Rn�n, we obtain the following sequence of inequalities:



S�1 �I �AT (AD2AT )�1AD2
�


1

=


S�1D�1(I �DAT (AD2AT )�1AD)D




1

�



X�1=2S�1=2





1



I �DAT (AD2AT )�1AD



1




X1=2S�1=2




1

� max
i=1;2;:::;n

1p
xisi

n1=2 max
i=1;2;:::;n

r
xi
si

� n1=2
1p

0�

max
i=1;2;:::;n

xip
xisi

� 1

�

n1=2C(d)

0

(C(d) + n�=kdk) ;(5.13)

where we used D2 = XS�1, xisi � 
0� and (2.13).
If we consider the reciprocal of the right-hand side of the expression (5.5), we

obtain



�S�1 �I � AT (AD2AT )�1AD2
� � S�1AT (AD2AT )�1

�


1

� 

S�1 �I � AT (AD2AT )�1AD2
�


1
+


S�1AT (AD2AT )�1




1

� 1

�

2kdkC(d)

0

(C(d) + n�=kdk)�(A) + 1

�

n1=2C(d)

0

(C(d) + n�=kdk) ;(5.14)

which follows from (5.11) and (5.13). Therefore, (5.14) implies

1

k[S�1 (I � AT (AD2AT )�1AD2) � S�1AT (AD2AT )�1]k
1

�

f(�)
def
=


0�

C(d) �n1=2 + 2kdk�(A)� [C(d) + n�=kdk] :(5.15)

It is easy to verify our claims that f is monotone increasing in � and that f(0) = 0.
Note that Proposition 5.1 guarantees only that the point (~x; ~y; ~s) is feasible for

the perturbed problem. To initiate a feasible path-following interior-point method,
we need to impose additional conditions to obtain a strictly feasible point for the
perturbed problem that lies in some neighborhood of the central path. For example,
in the proof, we imposed only the condition (~x; ~s) � 0. Strict positivity of ~x and ~s
could be ensured by imposing the following condition, for some � 2 (0; 1):

xi +�xi � �xi; si +�si � �si; 8 i = 1; 2; : : : ; n:(5.16)
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Equivalently, we can replace the necessary and su�cient condition kS�1�sk1 � 1 in
(5.8) by the condition (� � 1)e � S�1�s � (1� �)e, that is,

kS�1�sk1 � 1� �;

in the proof of Proposition 5.1. With this requirement, we obtain the followingbounds:

�xi � ~xi � (2 � �)xi; �si � ~si � (2� �)si:(5.17)

Note that if (�x;�y;�s) is the Newton step given by (5.2), then �xi�si � 0 for all
i = 1; 2; : : :; n. First, consider the case �xi � 0, which implies ~xi � xi. We have from
(5.17) that

~xi~si � xi~si � �xisi:(5.18)

A similar set of inequalities holds for the case �si � 0. Thus, if we de�ne ~� = ~xT ~s=n,
we obtain

~� � ��:(5.19)

Note that by (5.6), we already have ~� � �. With this observation, we can relate
the neighborhood in which the original iterate (x; y; s) lies to the one in which the
adjusted point (~x; ~y; ~s) lies.

Proposition 5.3. Let (x; y; s) be a strictly feasible point for d, and suppose that
�d = (0;�b;�c) and � 2 (0; 1) are given. Consider the Newton step of Proposition 5.1
and the adjusted point (~x; ~y; ~s) of (5.4). If






�
�c
�b

�




1

(5.20)

� 1� �

k[S�1(I �AT (AD2AT )�1AD2) � S�1AT (AD2AT )�1]k
1

;

with D de�ned in (5.3), then (~x; ~y; ~s) is strictly feasible for d + �d with ~� � �.
Moreover, if (x; y; s) 2 N�1(
0) for the original problem with 
0 2 (0; 1), then (~x; ~y; ~s)
satis�es (~x; ~y; ~s) 2 �N�1(�
0).

Proof. It su�ces to prove the �nal statement of the theorem. If we assume that
(x; y; s) 2 N�1(
0), then using (5.18) and (5.6), we have

~xi~si � �xisi � �
0� � �
0~�;(5.21)

which implies that (~x; ~y; ~s) 2 �N�1(�
0), as required.
We now have all the tools to be able to prove results like those of Section 4.

Suppose that the iterates of the original problem lie in a wide neighborhood with
parameter 
0. For convenience we de�ne

k�dk1 def
=






�
�b
�c

�




1

= max(k�bk1; k�ck1) :(5.22)

We also de�ne the relative perturbation measure �d as follows:

�d
def
=
k�dk1
kdk :(5.23)
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Note from (4.6) and (4.8) that

�d = max

�k�bk1
kdk ;

k�ck1
kdk

�
� max(�b; �c) � �bc:

Hence, it is easy to compare results such as Proposition 5.4 below, which obtain a
lower bound on � in terms of �d, to similar results in preceding sections.

Note that Theorem 5.2 provides a lower bound f(�) on the term on the right-
hand side of (5.5). Therefore, combining this result with Proposition 5.3, we conclude
that a su�cient condition for the perturbation �d to satisfy (5.20) is that k�dk1 is
bounded above by the lower bound (5.15) multiplied by (1� �), that is,

k�dk1 � (1� �)
0�

C(d) �n1=2 + 2kdk�(A)� (C(d) + n�=kdk) ;

which by rearrangement yields

� � C(d)2k�dk1(n1=2 + 2kdk�(A))
(1� �)
0 � nC(d)k�dk1(n1=2 + 2kdk�(A))=kdk;(5.24)

provided that the denominator of this expression is positive. To ensure the latter
condition, we impose the following bound on �d:

�d =
k�dk1
kdk <

(1� �)
0
nC(d)(n1=2 + 2kdk�(A)) :(5.25)

Indeed, when this bound is not satis�ed, the perturbation may be so large that the
adjusted point (~x; ~y; ~s) may not be feasible for d+�d no matter how large we choose
� for the original iterate (x; y; s).

We now state and prove a result like Proposition 4.3 that gives a su�cient condi-
tion on k�dk1 and � that ensure that the adjusted point (~x; ~y; ~s) lies within a wide
neighborhood of the central path for the perturbed problem.

Proposition 5.4. Let 
 and 
0 be given with 0 < 
 < 
0 < 1, and suppose that
� satis�es � 2 (0; 
0 � 
). Assume that �d satis�es

�d � 
0 � 
 � �

nC(d)(n1=2 + 2kdk�(A)) :(5.26)

Suppose that (x; y; s) 2 N�1(
0) for the original problem, and let (~x; ~y; ~s) be as de�ned
in (5.4). Then if

� � kdk
�
C(d)2�d

�
n1=2 + 2kdk�(A)

�
;(5.27)

we have (~x; ~y; ~s) 2 �N�1(
).
Proof. Setting � = 
=
0, we note that (5.26) satis�es the condition (5.25), and so

the Newton step adjustment yields a strictly feasible point for the perturbed problem.
By the argument preceding the proposition, (5.24) gives a su�cient condition for the
resulting iterate to lie in �N�1(
) by Proposition 5.3 since 
 = �
0 by the hypothesis.
However, (5.26) implies that the denominator of (5.24) is bounded below by �; hence,
(5.24) is implied by (5.27), as required.

The usual argument can now be used to show that a long-step path-following
method requires

O
�
n log

�
1

�
C(d)2�d

�
n1=2 + kdk�(A)

���
iterations(5.28)

to converge from the warm-start point to a point that satis�es (3.9).
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5.2. Perturbations in A. In this section, we also allow perturbations in A (i.e.,
we let �d = (�A;�b;�c)) and propose a Newton step correction strategy to recover
warm-start points for the perturbed problem from the iterates of the original problem.

The underlying idea is the same as in Section 5.1. Given a strictly feasible iterate
(x; y; s) 2 N�1(
0) for the original problem, we apply the Newton's method to recover
a feasible point for the perturbed problem by keeping the pairwise products xisi �xed.
As in Section 4.3, we impose an upper bound on � that excludes values of � that are
not likely to yield an adjusted starting point with signi�cantly better complexity than
a cold-start strategy. In particular, we assume that � satis�es (4.31) for some � > 1.
Let

�A
def
= A+�A:(5.29)

Given a feasible iterate (x; y; s) for the original problem, the Newton step correction
then is given by the solution to

�A�x = �b��Ax
�AT�y + �s = �c��ATy

S�x + X�s = 0:
(5.30)

Under the assumption that �A has full row rank, the solution to (5.30) is then given
by

�y = ( �AD2 �AT )�1( �AD2(�c��AT y) + �b��Ax)(5.31a)

�s = �c��ATy � �AT�y;(5.31b)

�x = �S�1X�s;(5.31c)

where D2 = S�1X as in (5.3).
By a similar argument, a necessary and su�cient condition to have strictly feasible

iterates for the perturbed problem is

kS�1�sk1 � 1� �; for some � 2 (0; 1):(5.32)

By Proposition 5.3, the duality gap of the resulting iterate will also be smaller than
that of the original iterate. We will modify the analysis in Section 5 to incorporate
the perturbation in A and will refer to the previous analysis without repeating the
propositions.

Using (5.31), we get

S�1�s = S�1(I � �AT ( �AD2 �AT )�1 �AD2)(�c��ATy)

�S�1 �AT ( �AD2 �AT )�1(�b��Ax):

Therefore, kS�1�sk1 is bounded above by



[S�1(I � �AT ( �AD2 �AT )�1 �AD2) � S�1 �AT ( �AD2 �AT )�1]



1






�
�c��AT y
�b��Ax

�




1

:

By Theorem 5.2, the �rst term in this expression is bounded above by 1= �f(�), where
�f (�) is obtained from f(�) in (5.15) by replacing �(A) by �( �A). For the second term,
we extend the de�nition (5.22) to account for the perturbations in A as follows:

k�dk1 def
= max

�k�bk1; k�ck1; k�Ak1; k�ATk1
�
;(5.33)
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and continue to de�ne �d as in (5.23). We obtain that






�
�c��AT y
�b��Ax

�




1

� maxfk�ck1 + k�ATk1kyk1; k�bk1 + k�Ak1kxk1g;
� maxfk�dk1(1 + kyk1); k�dk1(1 + kxk1)g;
� k�dk1(1 + �C(d)2);
� 2k�dk1�C(d)2;(5.34)

where we used (5.33), (4.32), � > 1 and C(d) � 1 to derive the inequalities. By
combining the two upper bounds we obtain

kS�1�sk1 � 1

�

1


0
2�C(d)3

�
n1=2 + 2kdk�( �A)

�
(C(d) + n�=kdk) k�dk1:(5.35)

Therefore, a su�cient condition to ensure (5.32) is obtained by requiring the upper
bound in (5.35) to be less than 1 � �. Rearranging the resulting inequality yields a
lower bound on �:

� � 2�C(d)4 �n1=2 + 2kdk�( �A)� k�dk1

0(1� �) � 2�nC(d)3 �n1=2 + 2kdk�( �A)� k�dk1=kdk ;(5.36)

provided that the denominator is positive, which is ensured by the condition

�d =
k�dk1
kdk <


0(1 � �)

2�nC(d)3 �n1=2 + 2kdk�( �A)� :(5.37)

The proof of the following result is similar to that of Proposition 5.4.

Proposition 5.5. Let 
 and 
0 be given with 0 < 
 < 
0 < 1, and suppose that
� satis�es � 2 (0; 
0 � 
). Assume that �d satis�es

�d � 
0 � 
 � �

2�nC(d)3 �n1=2 + 2kdk�( �A)� :(5.38)

Suppose that (x; y; s) 2 N�1(
0) and that (~x; ~y; ~s) is the adjusted point de�ned in
(5.4). Then we have (~x; ~y; ~s) 2 �N�1(
) provided that

� � kdk
�
2�C(d)4�d

�
n1=2 + 2kdk�( �A)

�
:(5.39)

The usual argument can be used again to show that a long-step path-following
method requires

O
�
n log

�
1

�
C(d)4�d

�
n1=2 + kdk�( �A)

���
iterations(5.40)

to converge from the warm-start point to a point that satis�es (3.9).
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6. Conclusions. We have described two schemes by which the iterates of an
interior-point method applied to an LP instance can be adjusted to obtain starting
points for a perturbed instance. We have derived worst-case estimates for the number
of iterations required to obtain convergence from these warm starting points. These
estimates depend chie
y on the size of the perturbation, on the conditioning of the
original problem instance, and on a key property of the constraint matrix.

In future work, we plan to extend the techniques to infeasible-interior-point meth-
ods, and perform computational experiments to determine the practical usefulness of
these techniques. We will also investigate extensions to wider classes of problems,
such as convex quadratic programs and linear complementarity problems.
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